Predicting the Oil Well Production Based on Multi Expression Programming

نویسندگان

  • Xin Ma
  • Zhi-bin Liu
چکیده

Predicting the oil well production is very important and also quite a complex mission for the petroleum engineering. Due to its complexity, the previous empirical methods could not perform well for different kind of wells, and intelligent methods are applied to solve this problem. In this paper the multi expression programming (MEP) method has been employed to build the prediction model for oil well production, combined with the phase space reconstruction technique. The MEP has shown a better performance than the back propagation networks, gene expression programming method and the Arps decline model in the experiments, and it has also been shown that the optimal state of the MEP could be easily obtained, which could overcome the overfitting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Correlation Based on Multi-Gene Genetic Programming for Predicting the Sweet Natural Gas Compressibility Factor

Gas compressibility factor (z-factor) is an important parameter widely applied in petroleum and chemical engineering. Experimental measurements, equations of state (EOSs) and empirical correlations are the most common sources in z-factor calculations. However, these methods have serious limitations such as being time-consuming as well as those from a computational point of view, like instabilit...

متن کامل

A multi-period fuzzy mathematical programming model for crude oil supply chain network design considering budget and equipment limitations

The major oil industry upstream activities include the exploration, drilling, extraction, pipelines installation, and production of crude oil. In this paper, we develop a mathematical model to plan for theseoperations as a crude oil supply chain network design problem.The proposed multi-period mixed integer linear programming model entails both strategic (e.g., facility location and allocation)...

متن کامل

Optimum Maintenance Strategy Selection using a Hybrid Approach based on Analytical Hierarchy Process and Revised Multi Choice Goal Programming

This study aims to select optimal maintenance strategy for components of an electric motor of the National Iranian Oil Refining and Distribution Company. In this regard, a method based on revised multi choice goal programming and analytic hierarchy process (AHP) is presented. Since improving the equipment reliability is an important issue, reliability centered maintenance (RCM) strategies are i...

متن کامل

Optimum allocation of Iranian oil and gas resources using multi-objective linear programming and particle swarm optimization in resistive economy conditions

This research presents a model for optimal allocation of Iranian oil and gas resources in sanction condition based on stochastic linear multi-objective programming. The general policies of the resistive economy include expanding exports of gas, electricity, petrochemical and petroleum products, expanding the strategic oil and gas reserves, increasing added value through completing the petroleum...

متن کامل

A Comparison of Regression and Neural Network Based for Multiple Response Optimization in a Real Case Study of Gasoline Production Process

Most of existing researches for multi response optimization are based on regression analysis. However, the artificial neural network can be applied for the problem. In this paper, two approaches are proposed by consideration of both methods. In the first approach, regression model of the controllable factors and S/N ratio of each response has been achieved, then a fuzzy programming has been app...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016